本文共 2361 字,大约阅读时间需要 7 分钟。
在平面坐标系上有n个点,我们需要用笔画一个多边形,使得这个多边形能够包含所有的n个点。这些点可以位于多边形的边上、内部或顶点上。解决这个问题的关键在于构造一个凸包,因为凸包是能够包围所有给定点的最小凸多边形。
选择基准点:首先,选择一个基准点作为凸包的一个顶点,通常选择最左下方的点作为基准点。
排序点:将所有点按照逆时针或顺时针的方向排序。逆时针排序在本文中更为直观。
处理点栈:使用栈来维护凸包的顶点。对于每个点,检查栈顶的点和当前点的关系,确保凸包的正确性。如果栈顶的点和当前点之间的连线能够包含栈顶的下一个点,则弹出栈顶的下一个点,直到满足条件为止。
计算面积:使用“鞋带定理”来计算多边形的面积。
#include#include #include #include #include using namespace std;const int N = 1005;const double eps = 1e-8;int n;struct pnt { double x, y;};double mul(pnt x, pnt y, pnt z) { double x1 = x.x - z.x, y1 = x.y - z.y; double x2 = y.x - z.x, y2 = y.y - z.y; return x1 * y2 - x2 * y1;}double dis(pnt x, pnt y) { return sqrt((y.x - x.x) * (y.x - x.x) + (y.y - x.y) * (y.y - x.y));}bool cmp(pnt x, pnt y) { if (abs(mul(x, y, s[1])) < eps) { return dis(x, s[1]) < dis(y, s[1]); } return mul(x, y, s[1]) > eps;}int sta[N], top;int main() { scanf("%d", &n); for (int u = 1; u <= n; u++) { scanf("%lf%lf", &s[u].x, &s[u].y); } if (n <= 1) { sta[1] = 1; sta[2] = 2; top = 2; for (int u = 3; u <= n; u++) { while (top > 2 && mul(s[u], s[sta[top]], s[sta[top - 1]]) > eps) { top--; } sta[++top] = u; } double ans = 0; sta[++top] = sta[1]; for (int u = 2; u <= top; u++) { ans += dis(s[sta[u]], s[sta[u - 1]]); } printf("%.4lf\n", ans); return 0; } for (int u = 2; u <= n; u++) { if (s[1].y - s[u].y > eps) { swap(s[1], s[u]); } else if (abs(s[1].y - s[u].y) < eps && s[1].x - s[u].x > eps) { swap(s[1], s[u]); } } sort(s + 2, s + 1 + n, cmp); sta[1] = 1; sta[2] = 2; top = 2; for (int u = 3; u <= n; u++) { while (top > 2 && mul(s[u], s[sta[top]], s[sta[top - 1]]) > eps) { top--; } sta[++top] = u; } double ans = 0; sta[++top] = sta[1]; for (int u = 2; u <= top; u++) { ans += dis(s[sta[u]], s[sta[u - 1]]); } printf("%.4lf\n", ans); return 0;}
结构体定义:定义了一个pnt结构体来存储点的坐标。
数学辅助函数:mul函数用于计算向量叉积,dis函数用于计算点之间的距离。
比较函数:cmp函数用于对点进行排序,确保点按照逆时针顺序排列。
主函数:
s中。通过这种方法,可以有效地构造包含所有给定点的凸包多边形,并计算其面积。
转载地址:http://vxcq.baihongyu.com/